- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Sherif, Eman (3)
-
Everson, Jayne (2)
-
Kivuva, F Megumi (2)
-
Barrett, Teanna (1)
-
Battle, Leilani (1)
-
Biira, B (1)
-
Kirdani-Ryan, Mara (1)
-
Ko, Amy (1)
-
Ko, Amy J (1)
-
Okolo, Chinasa T (1)
-
Oleson, Alannah (1)
-
Zhang, Amy (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ObjectivesIn calls for excellent and equitable Computer Science (CS) education, the wordrigoroften appears, but it often goes undefined. The goal of this work is to understand how CS teachers, instructors, and students conceive of rigor. Research Questions:1) What do CS instructors think rigor is? and 2) What do students think rigor is? Methods:Using the principles of phenomenological research, we conducted a semi-structured interview study with 10 post-secondary CS students, 10 secondary CS teachers, and 9 post-secondary CS instructors, to understand their conceptions of rigor. Results:Analysis showed that no participants had the same understanding of rigor. We found that participants had abstractPrinciples of Rigorwhich included: Precision, Systematic Thought Process, Depth of Understanding, and Challenge. They also had concreteObservations of Rigorthat included Time and Effort, Intrinsic Drive, Productive Failure, Struggle, Outcomes, and Gatekeeping. Participants also sharedConditions for Rigorwhich included Expectations, Standards, Community Support, and Resources. Implications:Our data supports prior work that educators are using different definitions of rigor. This implies that each educator holds different expectations for students, without necessarily communicating these expectations to their students. In the best case, this might confuse students; in the worst case, it reinforces hegemonic norms which can lead to gatekeeping which prevents students from fully participating in the CS field. Based on these insights, we argue that to commit to the idea of quality CS learning, the community must discard the use of this concept of rigor to justify student learning and re-imagine alternate benchmarks.more » « lessFree, publicly-accessible full text available November 11, 2026
-
Barrett, Teanna; Okolo, Chinasa T; Biira, B; Sherif, Eman; Zhang, Amy; Battle, Leilani (, ACM)Free, publicly-accessible full text available June 23, 2026
-
Sherif, Eman; Everson, Jayne; Kivuva, F Megumi; Kirdani-Ryan, Mara; Ko, Amy J (, ACM)
An official website of the United States government
